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We have investigated information transmission in an array of threshold units that have signal-dependent
noise and a common input signal. We demonstrate a phenomenon similar to stochastic resonance and suprath-
reshold stochastic resonance with additive noise and show that information transmission can be enhanced by a
nonzero level of noise. By comparing system performance to one with additive noise we also demonstrate that
the information transmission of weak signals is significantly better with signal-dependent noise. Indeed, infor-
mation rates are not compromised even for arbitrary small input signals. Furthermore, by an appropriate
selection of parameters, we observe that the information can be made to be (almost) independent of the level
of the noise, thus providing a robust method of transmitting information in the presence of noise. These result
could imply that the ability of hair cells to code and transmit sensory information in biological sensory systems
is not limited by the level of signal-dependent noise.
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I. INTRODUCTION

In recent years there has been a significant increase in
interest in the interplay between signals and noise in nonlin-
ear systems. This activity has largely been motivated by
studies of stochastic resonance (SR) [1-4] but also by a de-
sire to understand stochastic aspects of neural coding [5-9].
In particular, the study of signal coding in parallel arrays
(populations) of nonlinear devices (neurons) has received
considerable attention; in such arrays, a new form of SR—
termed suprathreshold stochastic resonance (SSR)—has been
discovered [10-13]. In a similar vain to SR, SSR can lead to
an improvement in information transmission when internal
noise is added to the system. However, SSR, which can only
occur in arrays of nonlinear devices, has a number of advan-
tages over conventional SR. First, it occurs for all signal
levels—it does not require that the signal be subthreshold.
Consequently SSR can be used to improve information trans-
mission for a broader class of signal than standard SR. Sec-
ond, it provides an optimal method of enhancing information
when the signal to be detected is comparable (or smaller)
than the residual internal noise [14,15]. In contrast, for SR in
a single device, greater information flow is usually obtained
by simply increasing the input signal (or lowering the thresh-
old if possible) rather then setting the signal to be subthresh-
old and utilizing SR. For these reasons, the potential exploi-
tation of SSR in technological applications is arguably
greater than for conventional SR and SSR may well be rel-
evant to optimal neural coding. Possible applications are
novel digital-to-analog converters [10,11,16—18], sonar ar-
rays [11,19], and cochlear implants [20].

Although SSR has now been studied in a wide variety of
different contexts [10-18,20-25], all these studies have been
undertaken assuming that the noise is additive. However, it is
well established that in neural systems the noise may enter in
a signal-dependent or multiplicative fashion [26-30]. Signal-
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dependent noise (SDN), for example, is characteristic of the
propagation or initiation of nerve impulses at synapses
through the quantal release of neurotransmitter. Furukawa et
al. [31,32] have shown experimentally that the variation of
the neurotransmitter release into a synaptic cleft is propor-
tional to the intensity of the stimulus. Consequently, the vari-
ance of the fluctuations in the postsynaptic potentials is sig-
nal dependent and, therefore, they cannot be modeled using
an additive noise process. This provides motivation to inves-
tigate the role of SDN in the transmission of information in
nonlinear systems. Furthermore, although there are a number
of studies of SR that consider SR with signal-dependent or
multiplicative noise [33-39], few have considered an array
of such devices (a notable exception is the study by Lindner
and Schimansky-Geier [34]) and, as yet, there have been no
studies of SSR with SDN. This paper addresses these
issues—specifically, we consider SSR effects with SDN.

II. MODEL

The model we study is loosely based on that proposed by
Furukawa et al. [31] for the modeling of synaptic transmis-
sion in hair cell transduction. However, the model has been
abstracted and simplified to enable theoretical analysis to be
undertaken and relate to other studies in SSR. The abstrac-
tion of the model from that in [31] means that we do not
wish this model to be viewed as a realistic model for synap-
tic transmission, but as a model for investigating the role of
SDN in information transmission in a simple nonlinear array.
Nevertheless, the results and conclusion may well have some
relevance to hair cell transduction.

We have modeled an array of N nerve fibers by an array
of N simple threshold units (level-crossing detectors), Fig. 1.
Each threshold unit was subject to the same input signal x,
which for generality can be considered to be transformed by
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FIG. 1. A summing array of N modeled nerve fibers.

the linear or nonlinear function F(x). The output y of each
unit is given by the Heaviside function

l:viE Ui’ (1)
Yi= 0: U,‘< Ui’

where U, is the threshold of the unit and i=1,...,N, and the
input to each threshold unit is given by

v;=\F(x) + Dn;F(x). (2)

Here, 7; has a Gaussian noise distribution with zero average
mean and unit dispersion, D is the coefficient of proportion-
ality (the “noise intensity”), and N is a parameter of the
model that dictates the level of the deterministic signal com-
ponent F(x). The term D;F(x) is clearly a fluctuational term
whose intensity varies with signal strength and which is ad-
ditive to the deterministic signal component. Through an ap-
propriate choice of threshold settings and noise intensities,
the array of threshold units can model a number of applica-
tions. For simplicity, however, we considered only the case
where the thresholds were identical (U;=U,="--=U) and all
units had the same noise intensity. This corresponds to the
configuration implemented in the original studies of additive
SSR. Moreover, the results were for a Gaussian signal, such
that the probability density for the input signal was given by

Px) = ( - ) (3)

() =———=exp|l—- 7|,
\27a? P 207

where o is the intensity of the signal.

Because the noises #7; were mutually independent—i.e.,
(mm;»=0 if i # j—the variables v; were also mutually inde-
pendent. The probability that exactly j units were in state 1
for a given value of x was therefore given by the binomial
distribution

x(= C;V fc(l —q )V,

N
Proby X y;=j
i=1

CN — L
T jHIN= )
Given that the noise intensity for each unit was identical,
q,=Prob{y;=1|x} was identical for all units too.
The overall output of the system was taken to be the sum

of the outputs of the individual units. The system can there-
fore be taken to map the instantaneous amplitude of the sig-

(4)
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nal, x, onto j, the number of units in state 1 such that j
:Eﬁﬂ’r

The structure of Eq. (2) is similar to additive noise models
previously studied. For comparison we will also show some
results for the additive noise model (5),

v;=\F(x)+ D, (5)

In these comparisons models (2) and (5) have identical pa-
rameters, and hence the behaviors of the models can be sim-
ply compared.

A. Linear model

We analyzed two versions of the model characterized by
different expressions for v;: a linear model and one with
rectification. In the linear model, we take the function F(x) to
be linear for simplicity such that F(x)=x and, therefore,

v;=\x+Dyx. (6)

With this condition, the conditional probability density of v,
was Gaussian,

Pv\x(vi|x) =

2
(v; = \x) >’ (7)

, exp| —
27D p( 2D%?

but with a mean of Ax and a standard deviation of Dx? that
are signal dependent. The probability that y,=1 for a given
signal level x can be calculated as

4= Prob{y; = 1|x} = Prob{v; > Ulx} = f Pv|x(Ui|x)dUi
U

U_)\x>. (®)

1 1
=~ -~ erf| ——=
2 2 “ ( \2D%?

B. Model with rectification

The second model we considered included a half-wave
rectification of the signal. The rectification is described by

v;=\R(x) + Dy,R(x), 9)

where R(x) is the rectification function,
R(x)={x: x>0, (10)

0:x=0,

Again, the motivation for studying a rectified signal comes
from the hair cell model [31]. The stereocilia (“hairs”) of
hair cells half-wave rectify signals due to the ion channel
opening probabilities being directionally sensitive; the signal
is only transduced when the stereocilia are displaced in a
specific direction (e.g., on the positive half cycle of the sig-
nal). We therefore wish to quantify the effect of this rectifi-
cation on information transmission.

The variable v; is not Gaussian for this model over all
values of x. When x>0, the conditional probability density

is given by Eq. (7)—that is,
_\x)?
i\ ) (11)

2D%?

1
\27D?%x? exp(

as before, but when x=0, we have

Pv\x(vi|x) =7
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Py (vx) = 8v)), (12)

where 8(v;) is the delta function. The probability that y;=1
for a given positive value of x is therefore

g, =Prob{y; = 1|x > 0} = Prob{v; = U|x > 0}

“ 1 1 U-\x
= | P, vfx)dv;== - erf|l —= , (13)
U 2 2 \3’2Dx

and for negative x, x=0, it is

~ Probly;= || <0}_J°°5( o= 0: U>0,
qy=Frobvy; = lix = Uy = ” v;)av;= - U=0.

(14)

III. MUTUAL INFORMATION

The mutual information between the instantaneous level
of the input signal x and the number of units in state 1, j, is
given by Shannon and Weaver [40] to be

I=H(j) - H(jlx), (15)

where H(j) denotes output entropy and H(j|x) denotes the

output entropy conditional on the input defined, respectively,
by

N
H(j) == 2 Qjlog,0; (16)
j=0
and
o N
H(jlx) =- f dxP (x)> Bjlog,B;, (17)
- J=0

where B j:Prob{Efi i=jlx}, and

N o
Q;=Prob) 2 y;= =f dxP (x)B,

i=1 —o0

_c! f P (1 - gV (18)

and

0 N

H(jlx) =~ J dxP (x) 2 CYgl(1 = g N
—o0 j=0

X [logyCY + j logag, + (N = jloga(1 = g,)].
(19)

The mutual information can be calculated by using Egs.
(15)—(19) in conjunction with Eq. (8) or Egs. (13) and (14)
for the linear and rectified cases, respectively.
IV. RESULTS
A. Linear model

In this section we present results of the “linear’” model,
by which we mean results obtained from computer simula-
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FIG. 2. The mutual information / as a function of the noise
intensity D for an array of threshold units for the linear model (6).
The results were obtained for a common threshold U=1 and a com-
mon Gaussian input signal x with a standard deviation o=1 and for
various numbers of threshold units from N=1 to N=64. In the up-
per panel A=1 and in the lower panel A=0.

tion of Egs. (1) and (6). The results presented in Fig. 2 cor-
respond to A=1 (upper panel) and A=0 (lower panel). This
figure shows that a nonmonotonic dependence of the mutual
information / on the noise intensity D is observed and,
hence, that the mutual information is optimized by a nonzero
level of noise. The phenomenon is therefore similar to sto-
chastic resonance for additive noise [1-4].

Furthermore, the upper panel of Fig. 2 displays an effect
similar to SSR [10]. For very weak noise (D=0.001) the
information is largely independent of the noise intensity but
yet the transmitted information is nonzero (just above 0.6
bits)—this is because in the absence of noise the signal can
be suprathreshold and hence some signal information is
transmitted. For N=1 the effect of increasing the noise is to
reduce information transmission, while for N> 1, an initial
increase in the information is observed. A distinguishing
characteristic of SSR is that a nonmonotonic dependence on
noise intensity is only observed for multiple elements; hence,
we can conclude that SSR appears to occur for SDN.

The results in the lower panel differ in that there is no
information transmission at low noise intensity. This is
simple to understand; for A=0, we have v;=D7x and hence
there is no deterministic signal component present in v;.
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FIG. 3. Comparison of signal-dependent noise (SDN) (with A
=0 and \=1) to additive noise. The mutual information / is shown
as a function of the noise intensity D for the linear model (6). The
results were obtained for a common threshold U=1 and a common
Gaussian input signal x with a standard deviation o=1. Results with
A=1 are shown by the curve with black dots and for A=0 by the
circles. The results of the additive noise model (5) for A=1 are
shown by the squares. The number of threshold units was N=1
(lower panel) and N=16 (upper panel).

Thus, v; can only exceed the threshold for nonzero D. Con-
sequently, the behavior here is similar to that of conventional
SR when the signal is predominantly subthreshold. At larger
noise intensities the results in the upper and lower panels are
similar as one would expect (because the noise term domi-
nates the expression for v;). Finally, we note that the infor-
mation increases as the number of devices increase — again
this is to be expected [10].

Figure 3 shows a comparison between the cases for A\
=0 (circles), A=1 (solid dots), and the additive noise model
(5) (squares) for N=16 (upper panel) and for N=1, the
single-element case (lower panel). It can be seen that in the
limit of weak noise intensity (D <\) the mutual information
of the linear model coincides with that for the model with
additive noise. To some extent this is to be anticipated be-
cause Egs. (6) and (5) reduce to the same model in the limit
D — 0. In this limit the mutual information can be calculated
analytically as

I=—Alog,A - (1-A)logy(1 -A),

where
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11 (U)
=—+—erfl = .
272 \\2x

However, it is some surprise that the agreement between
these models persists up to D=0.2. This close agreement is
observed independent of the number of elements. These re-
sults demonstrate that, qualitatively, there is little difference
in the SR and SSR effects between additive and SDN.

Figure 3 also shows (as was observed in Fig. 2) that in
limit of high noise intensity (D>>\) the dependence of the
mutual information on noise intensity is largely independent
of \. In this limit, Egs. (19) and (16) can be calculated ana-
lytically. For a finite threshold (- <U< +), and in the
limit of large values of D, the instantaneous level of the input
signal and the threshold level have no effect on the output
state of each threshold unit and the probability that the out-
put is in state 1, ¢,, is given by the probability that the
Gaussian noise exceeds 0; in the limit of large D, g, is there-
fore 0.5. The probability that j units are in state 1 is therefore
independent of x and is given by

N

— EL (20)

N
Prob Zy,:jx =N
i=1

From this independence between j and x, it follows that
N
Prob 2 y;=j ( =Prob

i=1

N
X yi=j|x (21)
i=1

and the output entropy and output entropy conditions on the
input are therefore identical. From Eq. (21), it follows that
the mutual information in the limit of large D is zero; this
analytic result is confirmed by the simulated results in Fig. 2.
While this analysis may seem somewhat trivial, it is included
to contrast with the results obtained with signal rectification
in the next section.

Figure 4 demonstrates the effect of varying the threshold.
The top panel is for A=1, the middle panel for A=0, and the
bottom panel for the additive noise model. Increasing the
threshold is well known to decrease the maximum informa-
tion transmitted by the SR and SSR effects when the noise is
additive [11]. This can clearly be seen in the bottom panel;
the maximum information is reduced from a value of 1.4 bits
(U=1) to about 0.3 bits (U=4). However, the reduction in
the information with increasing threshold is less prevalent in
the top panel and does not occur at all in the middle panel.
Consequently it would appear that SR and SSR are more
robust to changes in threshold when the noise is signal de-
pendent. To understand this behavior we note that the follow-
ing equivalences are to be expected when A=0:

v;=D¥7;= D(ax) ;= (Da)xn;= Dx,. (22)

This demonstrates that a scaling of the signal is equivalent to
a rescaling of the noise. Given that for A=0 the mutual in-
formation only depends on the ratio between the threshold
and the signal strength, this implies that the information must
also scale equivalently with the threshold level. Hence
changing the threshold simply results in a rescaling of the
noise. This scaling is observed in the middle panel of Fig. 4
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FIG. 4. The mutual information / as a function of the noise
intensity D for various thresholds U with signal-dependent noise (6)
(upper and middle panels) and for additive noise (5) (lower panel).
The results were obtained for N=16 and a common Gaussian input
signal x with a standard deviation o=1. Other parameters were \
=1 (upper and lower panels) and A=0 (middle panel). The curves
with circles, squares, diamonds, and triangles correspond to U=1,
U=2, U=4, and U=8, respectively.

which shows that the curves of mutual information against
noise intensity have identical forms for different values of U
but are shifted along the noise intensity axis; e.g., increasing
the threshold by a factor of 2 causes the optimum mutual
information to occur when the noise intensity is twice as
large. These scalings do not hold for nonzero A, but never-
theless, the top panel indicates that the maximum in the in-
formation curves is only weakly dependent on threshold.
The robustness of the maximal mutual information to
changes in threshold gives SDN a significant advantage com-
pared with additive noise when detecting signals that are
very weak—i.e., signals that are well below threshold. The
scaling arguments for A=0 suggest that, with SDN, the in-
formation transmitted is not compromised regardless of how
weak the signal is. In fact, information transmission rates of
1 bit can, in principle, be achieved for arbitrary small signals.
In contrast, with additive noise the information tends to zero
as the signal strength is reduced. In practice, the information
transmitted by a system with SDN will not be limited by the
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FIG. 5. The mutual information / as a function of the noise
intensity D for an array of threshold units with rectification (9). The
results were obtained for a common threshold U=1 and a common
Gaussian input signal x with a standard deviation o=1 and for
various numbers of threshold units from N=1 to N=64. The upper
panel is for A=1 and the lower panel for A=0.

size of the input signal but by the size of the residual additive
noise that is present in all physical systems.

B. Model with rectification

In this section we present results of the “rectified” model.
The results shown are for identical parameters to those in the
previous section but Eq. (6) has been replaced by Eq. (9).

Figure 5 shows the results for A=1 (top panel) and A=0
(bottom panel). These contrast with those for the linear
model shown in Fig. 2 in the following ways: first, a local
maximum existed (lower panel of Fig. 5) only for a suffi-
ciently large value N, much like for suprathreshold stochastic
resonance [10,12,13,20,41]. Second, the local maxima for
different values of N occurred at different noise intensities;
the location of the maximum shifted further to the region of
weak noise intensity for larger values N. (For the linear
model the locations of the maxima of the curves are almost
identical for different values of N.) Third, the mutual infor-
mation asymptotically approached 1 from above or below for
sufficiently large N and D. Indeed, this is the most notable
difference between the linear and rectified models. For the
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linear model the information tends to zero as the noise inten-
sity tends to infinity—as would be expected from results
based on additive noise. It is therefore of some surprise that,
at large values of the SDN, the information approaches an
asymptotic limit that is nonzero. The value of this asymptote
increases as N is increased and saturates at 1 bit for N> 8.

To understand this result we have considered the informa-
tion in the limit of large noise intensity. For the threshold U
less than or equal to zero, the probability ¢,=0.5 if x>0 and
q,=1 if x=0 at high noise intensity and the behavior of the
models with and without rectification is therefore the same—
i.e., limp_ _../=0. But when the threshold U is positive and
finite (0<U<+), the probability ¢,=0 if x=0 and ¢,
=1/2 if x>0. The conditional probability is therefore given
by

N
0 :j#0,
Prob Eyi:j x=0 :{ ],
i=1 1 ;J:O,
N CN
Proby X y;=j|x>0 =5§. (23)
i=1

Therefore, in contrast to the model without rectification, the
conditional probability of the model with rectification is de-
pendent on x. From Eq. (23) it follows that

N
Proby X, y;=j|j#0
i=1
oo N
= f dxP (x)Proby X, yi=j|x
— =l
0 N
= J dxP (x)Prob > yi=jlx=0
— i=1

m N
+ f dxP (x)Proby > y;=jlx>0
0 i=1
Y (” Y
= 5]% P, (x)dx,Proby >, ;=0
0 i=1
0
=f P (x)dx. (24)

Since the probability distribution of the Gaussian input sig-
nal is symmetric—i.e., P (x)=P,(-x) and [° P (x)dx=][ o
P, (x)dx=1/2—the previous expression can be rewritten as

N CN
Proby Xy, =j|i#0( =,
i=1
Y 1
Proby >, y,=0 =5 (25)

i=1

PHYSICAL REVIEW E 75, 021121 (2007)

By using Egs. (19), (16), and (25) the following expression
for the information entropies is obtained:

0 N N
H(jlx) = - f dxP (x) 2 Prob| 2 y;=jlx =0
0 Jj=0 i=1

N
X log,P) 2 yi=jlx =0
i=1

- f dxP (x) >, Prob) >, y; = jlx >0
0 =0 i=1
N N N
X log,P Eyi=j|X>0 =5 N+12 C710g2C7
i=1 2275
(26)
and
N

) N N+1 1
H(/)zl"'E_ N+ T N+

> Cllog,C}, (27)
j=1

The mutual information in the limit of large D is therefore

N+1
2N+1 :

Iim/I=1-

D—+o

(28)

The last term of Eq. (28) decreases with increasing N, and
for large N, the mutual information can be approximated by
I=1. Confirmation of this analytic result is shown in Fig. 5.
The asymptotic result, Eq. (28), is in good agreement with
the numerical results observed in Fig. 5.

The results shown in Fig. 6 are similar to those obtained
without rectification (Fig. 3)—with the exception that the
curves approach nonzero asymptotic values at large values of
SDN. We again see that results for A=1 coincide with those
for A=0 at large noise intensity and, in limit of weak noise,
the A=1 results coincide with the additive noise results. The
results for A=1 bridge those of the additive and A =0 results.

We note that the model with rectification and for A=0 has
similar scaling equivalences to the linear model,

0;= DR(%) n;= DR(ax) 7;= DaR(x) ;= DR(x)7;, (29)

and hence there is a simple scaling behavior between the
variance of the noise and the common threshold level U.
This is confirmed in Fig. 7 (middle panel), the curves of
mutual information against noise intensity have identical
forms for different values of U but are shifted along the noise
intensity axis. Such equivalences do not hold for the additive
noise model (bottom panel) or for nonzero N (top panel).
However, for nonzero N the scaling is observed to hold ap-
proximately at large values of the SDN. By comparing the
top and middle panels of Fig. 7 to the bottom panel (additive
noise) it can again be observed that for weak signals (i.e.,
large U) SDN substantially outperforms additive noise.
However, with rectification this improved performance is
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FIG. 6. Comparison of signal-dependent noise (with A=0 and
A=1) to additive noise. The mutual information 7 is shown as a
function of the noise intensity D for the rectified model (9). The
results were obtained for a common threshold U=1 and a common
Gaussian input signal x with a standard deviation o=1. Results with
A=1 are shown by the curve with black dots and for A=0 by the
circles; the results of the additive noise model (5) for A=1 are
shown by the squares. The number of threshold units was N=1
(lower panel) and N=16 (upper panel).

even more striking (compared with the nonrectified case) at
large noise intensities; weak signals and large SDN do not
limit the ability of the system to transmit information.

We make one final observation regarding the effect of
rectification and SDN. In principle, with an appropriate
choice of threshold and setting A to be nonzero, it is possible
to obtain information transmission rates that only depend
weakly on the level of noise. This is particularly noticeable
in Fig. 5 (e.g., top panel and N=4) and Fig. 6 (solid dotted
curves). In principle, and unlike additive noise, this means
that SDN need not limit the ability of the system to transmit
information and that the information rates are robust to
changes in the noise level. This may have implications for
the transduction and transmission of information by hair
cells—on which our models are based. Hair cells both rectify
signals and also, via synaptic transmission, introduce a form
of SDN. It is possible, therefore, that sources of SDN do not
limit the ability of hair cells to transit information.
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FIG. 7. The mutual information / as a function of the noise
intensity D for various thresholds U with the rectified model (9)
(upper and middle panels) and for additive noise (5) (lower panel).
The results were obtained for N=16, various thresholds U, and a
common Gaussian input signal x with a standard deviation o=1.
Other parameters were A=1 (upper and lower panels) and \=0
(middle panel). The curves with circles, squares, diamonds, and
triangles correspond to U=1, U=2, U=4, and U=8, respectively.

V. CONCLUSION

In this paper we have investigated a simple neural-
inspired model that consisted of an array of threshold units
with signal-dependent noise.

The three main findings are as follows. First, we have
shown a relationship between the mutual information and
noise intensity that is similar to the phenomenon of stochas-
tic resonance and suprathreshold stochastic resonance that
have previously been observed with additive noise [10,11].
In particular, we have shown that a nonzero level of signal-
dependent noise can lead to increased information transfer in
threshold systems.

Second, we found that, for weak signals, the information
transmission with signal-dependent noise is more effective
than with additive noise. Furthermore, the performance of
the system with signal-dependent noise is not compromised
by high thresholds or, equivalently, weak signals; approxi-
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mately the same level of information can be transmitted in-
dependent of the size of the signal. In principle, signals of
arbitrary small amplitude can be enhanced by signal-
dependent noise.

Finally, we observed that if the signal is first rectified,
then the transmitted information can be made largely inde-
pendent of the level of the signal-dependent noise. We specu-
late that, in principle, hair cells could potentially exploit

PHYSICAL REVIEW E 75, 021121 (2007)

these result to provide robust signal coding in biological sen-
sory systems.
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